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Abstract

A new plastic-damage constitutive model for concrete is proposed in this paper. A tensile and a shear damage var-
iable are adopted to describe the degradation of the macromechanical properties of concrete. Within the framework of
continuum damage mechanics, the elastic Helmholtz free energy is defined to establish the plastic-damage constitutive
relation with the internal variables. Regarding the specific format for the effective stress space plasticity, the evolution
law for the plastic strains and the explicit expression for the elastoplastic Helmholtz free energy are determined and the
damage energy release rates that are conjugated to the damage variables are derived. Thus, damage energy release rate-
based damage criteria can be established in conformity to thermodynamical principles. In accordance with the normal-
ity rule, evolution laws for the damage variables are obtained to complete the proposed plastic-damage model. Some
computational aspects concerning the numerical algorithm implementation are discussed as well. Several numerical
simulations are presented at the end of the paper, whose results allow for validating the capability of the proposed
model for reproducing the typical nonlinear performances of concrete structures under different monotonic and cyclic
load conditions.
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1. Introduction

Despite the noteworthy recent research efforts and contributions, the task of nonlinear finite element
analysis (NFEA) of concrete structures is still quite challenging. The accurate modeling of concrete perfor-
mances, the key issue to NFEA, remains a somewhat controversial matter.

The most commonly used theories for the modeling of concrete are plasticity, fracture-based approaches
and continuum damage mechanics (CDM). Plasticity, which has been successfully applied to metals, is now-
adays theoretically consolidated and world-widely recognized as computationally efficient. Examples of its
application to concrete can be found in Ohtani and Chen (1988), Etse and Willam (1994) and Feenstra and
de Borst (1996), as well as in Chen (1994) reviews and references therein. Though the plasticity models are far
superior to elastic approaches in representing hardening and softening characteristics, they fail to address the
process of damage due to microcracks growth, such as the stiffness degradation, the unilateral effect, etc.

Intermingled with classical continuum mechanics in uncoupled manner, fracture mechanics suggests an
approach to describe localized damage as to be represented by the ideal or regular discrete cracks with def-
inite geometries and locations, and it has been extensively used in engineering practice (Krajcinovic, 1985).
However, the associated questions whether the J integrals and stress intensity factors are material param-
eters or not are far from being settled (Yazdani and Schreyer, 1990). Besides, before the appearance of mac-
rocracks in concrete there exist a lot of smeared microcracks whose geometries and locations could not be
determined precisely, so it appears difficult to apply fracture mechanics for modeling concrete.

Based on the thermodynamics of irreversible processes, the internal state variable theory and relevant
physical considerations (Ju, 1989), CDM provides a powerful and general framework for the derivation
of consistent constitutive models suitable for many engineering materials, including concrete. In the earlier
literature (Mazars, 1984, 1985; Mazars and Pijaudier-Cabot, 1989), CDM was restricted to linear ‘‘elastic-
damage’’ mechanics for brittle materials, i.e., linear elastic solids with distributed microcracks, affording
different ways for handling observed phenomena like the stiffness degradation, the tensile softening and
the unilateral effect due to the development of microcracks and microvoids. More examples of elastic
CDM models for concrete can be found in Lubarda et al. (1994), Cervera et al. (1995), Halm and Dragon
(1996), Comi and Perego (2001), etc.

Coupled with plasticity or by means of empirical definitions, the irreversible strains due to plastic flow
can also be accounted for in elastoplastic damage theories, such as those proposed by Ortiz (1985), Lemai-
tre (1985), Dragon (1985), Resende (1987), Simo and Ju (1987), Yazdani and Schreyer (1990), Carol et al.
(1994), di Prisco and Mazars (1996), Lee and Fenves (1998), Faria et al. (1998), Hatzigeorgioiu et al. (2001),
Hansen et al. (2001) among others.

One of the critical issues associated with damage model of concrete is selection of damage criteria. Sev-
eral different criteria, such as the equivalent strain-based (Mazars, 1984), and the stress-based approaches
(Ortiz, 1985; Chow and Wang, 1987) as well as the damage energy release rate-based (DERR-based) pro-
posals (Mazars, 1985; Simo and Ju, 1987; Ju, 1989), are generally adopted in the current practice. Among
them, it has been pointed out that (Ju, 1989) the equivalent strain-based damage criteria are only appro-
priate for the elastic state, and the stress-based damage criteria are inherently inadequate for predicting per-
fect plastic damage growth. As is well known, in classical plasticity the stress tensor is thermodynamically
conjugated to the plastic strain tensor, so the yield criteria are defined as functions of the stress tensor invar-
iants. Analogously thermodynamically consistent damage criteria might be based on DERRs that are the
conjugated forces to the damage variables.

However, most of the above referred damage models, except in Ju (1989), are based on the Helmholtz
free energy (HFE) and the DERR proposed by Lemaitre (1985), where contribution of the plastic strains to
the microcrack growth process is not considered, and the driving force of damage growth is the elastic
DERR alone, which might not be physically appropriate. Therefore, if the damage criteria are based on
the elastic DERRs, the strength enhancement observed in the compression–compression domain (Kupfer
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et al., 1969) cannot be predicted [see the unilateral damage model of Mazars (1985)]. To deal with above
problem, Ju (1989) suggested an elastoplastic one-scalar damage model in which both the plastic strains
and the plastic HFE were defined based on the effective stress space plasticity to cope with the coupled ef-
fects between the damage evolutions and the plastic flow. However, only under very simple situations such
as Von Mises plasticity with linear isotropic hardening, the plastic HFE was provided explicitly in the mod-
el, and for other plasticity models more appropriate for concrete, it could only be computed incrementally
with numerical integration, which might be time-consuming and unsteady. Moreover, though the model is
thermodynamically more reasonable, but only under uniaxial compression its predicted results might agree
with experimental observations; and no examples for concrete under more complex stress states, e.g., biax-
ial compression, were provided yet.

To improve the fitting of the model predictions to the concrete experimental data, other researchers
(Faria et al., 1998; Comi and Perego, 2001) abandoned the DERR-based damage criteria, and turned to
the empirically defined ones. In spite of the satisfactory results obtained under pure tension and pure com-
pression stress states, in the tension–compression domain the model of Faria et al. (1998) neglects the influ-
ence on the compressive strength in one direction due to the tensile stress or strain acting perpendicularly
and vice versa, which is obviously conflicting with the experimentally observed strength decays (Kupfer
et al., 1969; Vecchio and Collins, 1986). In Comi and Perego (2001) a pure elastic-damage model is pro-
posed, where the damage criteria were described by a hyperbola for the tensile stress domains and an ellipse
for the pure compressive stress quadrants. Many parameters with not very clear physical meaning are re-
quired to be determined in this model, and only under monotonic loadings the numerical results fit the
experimental test data adequately.

With inspiration from all the previous works and understandings mentioned above, this paper aims to
present a novel rate-independent plastic-damage model for concrete that should be consistent with thermo-
dynamics and fit well with the concrete experimental observations, including the stiffness degradation, the
enhancement of strength and ductility under compressive confinement, the strength decay induced by
orthogonal tensile cracking and the unilateral effect under cyclic loading. The paper is organized as follows.

In Section 2 the peculiarities of the experimentally observed behaviour of concrete are reviewed. A ten-
sile damage variable and a shear damage variable leading to a fourth-order damage tensor, are chosen to
describe the degradation of the macromechanical properties of concrete. A decomposition of the effective
stress tensor is presented thereafter to define an elastic HFE, after which the plastic-damage constitutive
relation with internal variables is derived. Section 3 is devoted to the evolution laws for the internal vari-
ables. The evolution law for plastic strains is obtained and then the plastic HFE of concrete is determined.
The elastic and plastic components of HFE are added up to the total elastoplastic one, from which the elas-
toplastic DERRs conjugated to the damage variables are derived to establish the damage criteria. Subse-
quently, in accordance with the normality rule, the evolution laws for the damage variables are
obtained. Pertinent computational aspects concerning the numerical implementation and the algorithmic
consistent tangent modulus for the constitutive model are presented in Section 4. In Section 5 some numer-
ical applications of the model to experimental tests of concrete specimens and structures under different
loadings are provided to validate and demonstrate the capability of the proposed model. Section 6 closes
this paper with the most relevant conclusions.
2. Elastic-damage model

2.1. Damage mechanisms

To identify the basic mechanisms that lead to concrete damage growth, some primary features of con-
crete behaviour experimentally observed in tests are presented first.
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When loaded in compression concrete experiences progressive loss of stiffness in the deviatoric space
along with observed volumetric changes when approaching collapse putting into evidence strong dilatancy.
The available experimental results in tension indicate a deviatoric behaviour similar to that observed in
compression, but the volumetric performance, unlike in compression, is of a softening nature. Finally, un-
der hydrostatic compression concrete exhibits somewhat softening behaviour at low stress levels, but as
stress increases a predominantly stiffening behaviour is observed; upon unloading, concrete behaves almost
elastically at first, losing stiffness progressively afterwards (Resende, 1987).

Consequently, three damage mechanisms can be consensually identified from the experimental observa-
tions, which are: (i) a tensile one, which represents the separation of material particles leading to cracks
developed predominantly in fracture mode I; (ii) a shear one, inherent to mode II, associated to the break-
ing of internal bonds during the loading of concrete in shear; and finally (iii) a compressive consolidation
one, due to collapse of the microporous structure of cement matrix under triaxial compression.

From these damage mechanisms it is possible to conclude that:

• Loaded in tension concrete damage is activated as the result of both the tensile and shear mechanisms in
the deviatoric space. In general the former one develops much quicker than the latter one (Resende,
1987), and thus the shear damage mechanism can be ignored for convenience. In the volumetric space
the damage of concrete is activated by the tensile damage mechanism.

• Loaded in compression concrete damage is activated by the shear damage mechanism. The compressive
consolidation mechanism of concrete in the volumetric space will be partially taken into consideration via
minor modification of the shear damage criteria, as it will be further discussed in Section 3 of the paper.

Thus, two basic but distinct mechanisms, namely the tensile and shear damage ones, respectively, are
consistently referred to in the derivation of the constitutive model to be presented herein.

2.2. Types of damage models

The effectiveness and performance of a damage model depends heavily on its particular choice of a set of
damage variables, which actually serves as a macroscopic approximation for describing the underlying
micromechanical process of microcracking. In current literature, there are many ways to define appropriate
damage variables which are phenomenologically defined or micromechanically derived. In this paper the
attention is restricted to the phenomenological approach. According to the damage variables adopted,
the CDM models can be classified essentially in two categories: (i) the scalar damage ones, where one or
several scalars are adopted to characterize the isotropic damage processes (Mazars, 1984; Faria et al.,
1998; Lee and Fenves, 1998; Hatzigeorgioiu et al., 2001); (ii) the tensor damage ones, where second-order,
fourth-order or even eighth-order damage tensor are necessary to account for anisotropic damage effects
(Ortiz, 1985; Dragon, 1985; Yazdani and Schreyer, 1990; Chaboche et al., 1995).

The one-scalar damage models (Mazars, 1984; Simo and Ju, 1987; Ju, 1989) are somewhat limited to
describe the unilateral effect inherent to concrete behaviour. Moreover, Poisson�s ratio is inferred to be a
constant in this kind of damage model, which is inconsistent with the phenomena that Poisson�s ratio de-
crease under tensile load and increase under compressive load due to microcracking. In fact, even for iso-
tropic damage, not a one-scalar damage variable but at least a fourth-order damage tensor should be
employed to characterize the state of damage in materials (Ju, 1990). However, the inherent complexities
of numerical algorithms required by most of the anisotropic tensor damage models restrict their applica-
bility to practical engineering.

Based on the considerations about the damage mechanisms discussed in Section 2.1, a tensile damage
scalar d+ and a shear damage scalar d� will be adopted here to describe the degradation of the concrete
macromechanical properties under tension and compression, respectively. As it will be shown, these two
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damage scalars will lead to a fourth-order damage tensor, which agrees with the conclusion drawn in Ju
(1990).

2.3. Decomposition of the effective stress tensor

In CDM the effective stress �r in damaged material may be assumed to follow the classical elastoplastic
behaviour (Ju, 1989; Faria et al., 1998), i.e.
�r ¼ C0 : e
e ¼ C0 : ðe� epÞ ð1Þ
or equivalently
ee ¼ K0 : �r ð2Þ

where C0 and K0 ¼ C�1

0 denote the usual fourth-order isotropic linear-elastic stiffness and compliance ten-
sors, respectively; e, ee and ep are rank-two tensors, denoting the strain tensor, its elastic and plastic tensor
components.

To account for the different nonlinear performances of concrete under tension and compression, and to
explicitly reproduce the dissimilar effects of the tensile and shear damage mechanisms, a decomposition of
the effective stress tensor �r into positive and negative components (�rþ, �r�) is performed as (Ortiz, 1985; Ju,
1989; Faria et al., 1998)
�rþ ¼ Pþ : �r ð3aÞ
�r� ¼ �r� �rþ ¼ P� : �r ð3bÞ
with the fourth-order projection tensors P+ and P� expressed as (Faria et al., 2000)
Pþ ¼
X
i

Hð�riÞðpii � piiÞ ð4aÞ

P� ¼ I� Pþ ð4bÞ
where I is the fourth-order identity tensor; Hð�riÞ denotes the Heaviside function computed for the ith eigen-
value �ri of �r; and the second-order tensor pii will be defined in Eq. (7).

In order to express the rate format of the proposed model and to facilitate the derivation of the algorith-
mic consistent modulus, it is also necessary to split _�r into its positive and negative components ( _�r

þ
, _�r

�
) as
_�r
þ ¼ d

dt
ðPþ : �rÞ ¼ Qþ : _�r ð5aÞ

_�r
� ¼ d

dt
ðP� : �rÞ ¼ Q� : _�r ð5bÞ
where the fourth-order tensors Q+ and Q� are the corresponding projection tensors of _�r, and due to the
nonlinear nature of P+ and P�, a somewhat more complicated procedure (refer to Faria et al., 2000 and
see Appendix I for more discussions) is necessary to derive the expressions for them, leading to
Qþ ¼ Pþ þ 2
X3

i¼1;j>i

h�rii � h�rji
�ri � �rj

pij � pij ð6aÞ

Q� ¼ I�Qþ ð6bÞ
To be used in Eqs. (4a) and (6), the second-order symmetric tensor pij should be defined as (see Faria
et al., 2000 for details)
pij ¼ pji ¼ 1ðni � nj þ nj � niÞ ð7Þ

2
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where ni is the ith normalized eigenvector corresponding to �ri; symbols h Æ i are the McAuley brackets (ramp
function) defined as
hxi ¼ ðxþ jxjÞ=2 ð8Þ
2.4. Elastic HFE potential

To establish the intended constitutive law, an elastic HFE potential should be introduced as function of
the free and internal variables. The initial elastic HFE potential we

0 is here defined as the elastic strain en-
ergy. It can be written as the addition of its positive and negative components (weþ

0 , we�
0 ) with the decom-

position of the effective stress tensor given in Eqs. (3)
we
0ðeeÞ ¼ 1

2
�r : ee ¼ 1

2
�rþ : ee þ 1

2
�r� : ee ¼ weþ

0 ðeeÞ þ we�
0 ðeeÞ ð9Þ
where superscript ‘‘e’’ refers to ‘‘elastic’’ and subscript ‘‘0’’ refers to ‘‘initial’’ states. weþ
0 and we�

0 are further
expressed as
we�
0 ðeeÞ ¼ 1

2
�r� : ee ¼ 1

2
�r : ðP� : K0Þ : �r ¼ 1

2
ee : ðC0 : P

�Þ : ee ð10Þ
with symbol ‘‘±’’ denoting ‘‘+’’ or ‘‘�’’, as appropriate.
Considering the tensile and shear damage mechanisms mentioned in Section 2.1, an elastic HFE poten-

tial with the form
weðee; dþ; d�Þ ¼ weþðee; dþÞ þ we�ðee; d�Þ ð11Þ
can be postulated, with we+ and we� defined as
we�ðee; d�Þ ¼ ð1� d�Þwe�
0 ðeeÞ ð12Þ
2.5. Constitutive law and dissipation

In general, the total elastoplastic HFE potential can be defined as the sum of the elastic component we

defined in Eqs. (10)–(12), and plastic component wp to be defined in Section 3.2, assumed uncoupled in the
following manner:
wðee; j; dþ; d�Þ ¼ weðee; dþ; d�Þ þ wpðj; d�Þ ð13Þ

where j denotes a suitable set of plastic variables to be discussed in the next section.

On a purely isothermal mechanical process, the second principle of thermodynamics (Lubliner,
31972) states that any irreversible process should satisfy the Clausius–Duheim inequality, whose reduced
form is
_c ¼ � _wþ r : _e P 0 ð14Þ

By differentiating Eq. (13) with respect to time, one gets
_w ¼ owe

oee
: _ee þ ow

odþ
_d
þ þ ow

od�
_d
� þ owp

oj
� _j ð15Þ
Referring to the standard thermodynamics arguments (Coleman and Gurtin, 1967), along with the assump-
tion that damage and plastic unloading are elastic processes, for any admissible process the following con-
ditions have to be fulfilled:
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r ¼ we

oee
ð16Þ

_cd ¼ � ow

odþ
_d
þ þ ow

od�
_d
�

� �
P 0 ð17Þ

_cp ¼ r : _ep � owp

oj
� _j P 0 ð18Þ
From Eq. (16) it can be clearly seen that the Cauchy stress tensor is only dependent on the elastic HFE
potential, which is a variant to Faria et al. (1998) model where the total one are considered.

Considering the definition for the elastic HFE potential expressed in Eqs. (10)–(12), Eq. (16) leads to
r ¼ ð1� dþÞPþ : �rþ ð1� d�ÞP� : �r ¼ �r� ðdþPþ þ d�P�Þ : �r ð19Þ
It is then possible to obtain a final form for the constitutive law, which is a rather intuitive expression for
the Cauchy stress tensor r (Wu and Li, 2004)
r ¼ ðI�DÞ : �r ¼ ðI�DÞ : C0 : ðe� epÞ ð20Þ
where the fourth-order damage tensor D is expressed as
D ¼ dþPþ þ d�P� ð21Þ
It should be noted that Eq. (20) is the standard relation between the Cauchy stress tensor r and the effec-
tive stress tensor �r in CDM, according to the ‘‘equivalence strain’’ assumption (Lemaitre, 1985; Ju, 1989),
and Eq. (21) is also coincident with Ju (1990).

From the observation of Eq. (17) the tensile and the shear DERRs Y+ and Y�, conjugated to the cor-
responding damage variables, can be expressed as
Y � ¼ � ow

od� ð22Þ
Eq. (22) demonstrates that the DERRs depend on the total elastoplastic HFE potential, and not just on
the elastic one as in the classical damage model of Lemaitre (1985). Accordingly, it is physically incorrect to
consider the damage criteria based on the elastic DERRs alone, since disregarding the contribution of plas-
tic strains would prevent the model from predicting the enhancement of the concrete strength under the
biaxial compression (Mazars, 1985).
3. Plastic-damage model

3.1. Plastic strains

To determine the required effective stress tensor, the evolution law for the irreversible plastic strains ten-
sor ep has to be established first. Owing to the coupling between the damage evolutions and the plastic
flows, the so-called ‘‘effective stress space plasticity’’ (Ju, 1989) should be resorted to establish the evolution
laws for the plastic strains (Wu and Li, 2004)
_ep ¼ _k
p
o�rF p ð23aÞ

_j ¼ _k
p
H ð23bÞ

F ð�r; jÞ 6 0; _k
p
P 0; _k

p
F ð�r; jÞ 6 0 ð23cÞ



590 J.Y. Wu et al. / International Journal of Solids and Structures 43 (2006) 583–612
where F and Fp are the plastic yield function and the plastic potential, respectively; _k
p
is the plastic flow

parameter; H denotes the vectorial hardening function; and operator oxy = oy/ox is the partial differenti-
ation operator.

Plastic potential Fp adopted in the present model is the Drucker–Prager function expressed as (Ortiz,
1985; Lee and Fenves, 1998)
F p ¼ apI1 þ
ffiffiffiffiffiffiffi
2J 2

p
ð24Þ
where I1 is the first invariant of �r; J 2 is the second invariant of �s, the deviatoric component of �r; and ap P 0
is a parameter chosen to provide proper dilatancy with common range between 0.2 and 0.3 for concrete.

Combining Eqs. (23a) and (24), the evolution law for the plastic strains is obtained
_ep ¼ _k
p �s

k�sk þ ap1

� �
ð25Þ
where k�sk ¼
ffiffiffiffiffiffiffiffi
�s : �s

p
¼

ffiffiffiffiffiffiffi
2J 2

p
is the norm of �s; 1 is the second-order identity tensor.

If one introduces the hardening parameters j+ and j� as the equivalent plastic strains under uniaxial
tension and compression, respectively, with the definition
jþ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_epmax _e
p
max

q
dt; j� ¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_epmin _e

p
min

q
dt ð26a; bÞ
where _epmax and _epmin are the maximum and minimum eigenvalues of the plastic strain rate tensor _ep, the evo-
lution law for vector j may be postulated
_j ¼ w _jþ; ð1� wÞ _j�f gT ¼ w_epmax;�ð1� wÞ_epmin

� �T ð27Þ
with w being a weight factor expressed as
w ¼
X3
i¼1

h�rii
X3
i¼1

j�rij
,

ð28Þ
that is equal to one if all the eigenstresses �ri are positive and equal to zero if they are all negative (Lee and
Fenves, 1998). Calling for Eq. (23b), the vectorial hardening function H is thus derived (Wu, 2004)
H ¼
Hþ

H�

� �
¼

wo�ri;maxF
p

�ð1� wÞo�ri;min
F p

( )
¼ diag½w;�ð1� wÞ�fo�̂rF pg ð29Þ
where diag[ Æ ] is a diagonal matrix; vector �̂r ¼ f�ri;max; �ri;mingT, with �ri;max and �ri;min being the maximum and
minimum values of �ri.

Any yield function F appropriate for concrete can be adopted in Eq. (23c). Here a modified function
proposed in Lubliner et al. (1989) and Lee and Fenves (1998) is adopted
F ð�r; jÞ ¼ aI1 þ
ffiffiffiffiffiffiffi
3J 2

p
þ bh�ri;maxi

� 	
� ð1� aÞc ð30Þ
with following expressions for a, b and c:
a ¼ ð#� 1Þ=ð2#� 1Þ ð31aÞ

bðjÞ ¼ ð1� aÞ�f �ðjÞ=�f þðjÞ � ð1þ aÞ ð31bÞ
cðjÞ ¼ �f

�ðjÞ ð31cÞ
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where # is the ratio between the yield strengths under equibiaxial and uniaxial compression, usually taking
a value in the interval 1.10–1.20; and �f

þðjÞ and �f
�ðjÞ denote evolution stresses (positive values are used

here) in the effective stress space due to plastic hardening/softening under uniaxial tension and compres-
sion, respectively.

Though many hardening rules can be adopted to describe the expansion of the yield surface in the effec-
tive stress space, the following linear isotropic hardening expressions are used here for simplification:
�f
�ðjÞ ¼ �f

�
y þ Ep�j� ð32Þ
where �f
þ
y and �f

�
y are the effective yield strengths under uniaxial tension and compression, approximated as

�f
þ
y ¼ ft and �f

�
y ¼ fc, with ft and fc being the uniaxial tensile and compressive strengths. In Eq. (32) Ep± are

the effective plastic hardening modulus under uniaxial tension and compression relating to the elastoplastic
tangent modulus Eep± as follows (Simo and Hughes, 1998):
Eep� ¼ E0Ep�

E0 þ Ep� ¼ 1� 1

1þ R�
E

� �
E0 ð33Þ
where R�
E ¼ Ep�=E0 denote the ratios between Ep± and the initial Young�s modulus E0.

Then, in rate form the relation between the effective stress and the strain tensors can be deduced by the
standard procedures in classical plasticity as follows (Ju, 1989):
_�r ¼ Cep : _e ð34Þ
where Cep is the continuum effective elastoplastic tangent tensor
Cep ¼
C0 if _k

p ¼ 0

C0 �
ðC0 : o�rF pÞ � ðC0 : o�rF Þ
o�rF : C0 : o�rF p � ojF �H if _k

p
> 0

8><
>: ð35Þ
3.2. Plastic and elastoplastic HFE potentials

In order to clearly define concepts such as ‘‘loading’’, ‘‘unloading’’, or ‘‘reloading’’, damage criteria anal-
ogous to the yield criteria in plasticity should be introduced.

Since elastoplastic DERRs are the conjugated forces to the damage variables, thermodynamically con-
sistent damage criteria should be based on Y± defined in Eq. (22). To this end, one has to determine the
plastic HFE potential first.

Comparing contribution to the plastic HFE potential from plastic strains of concrete in compression, the
one from tension is so much smaller that wpþ

0 ¼ 0 can be assumed. Accordingly only the negative compo-
nent wp�

0 is taken into consideration, in the present model through the following expression (Wu, 2004 and
see also Appendix II):
wp
0ðjÞ ¼ wp�

0 ðjÞ ¼ b
2E0

3J
�
2 þ gpI

�
1

ffiffiffiffiffiffiffi
3J 2

p
� 1

2
I
þ
1 I

�
1

� �
ð36Þ
where I
�
1 are the first invariants of �r�; J

�
2 is the second invariant of �s�, the deviatoric tensorial components

of �r�; gp ¼
ffiffiffiffiffiffiffiffi
3=2

p
ap is an alternative parameter to describe the dilatancy; and parameter b is a material

property (see Appendix II for further details), devised so that the ratio between the equibiaxial and the uni-
axial compressive strengths could match the usual 1.10–1.20 values (Kupfer et al., 1969).
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According to the analysis of concrete micromechanics (Lemaitre, 1985), resulting mainly from internal
slips on the interface between the matrix and the aggregates, plastic flow is generally controlled by the shear
damage mechanism. Hence, plastic HFE potential is assumed to be a function with the form
wpðj; d�Þ ¼ ð1� d�Þwp
0ðjÞ ð37Þ
Substituting Eqs. (10)–(12) and (37) into Eq. (13), the elastoplastic HFE potential becomes
wðee; j; dþ; d�Þ ¼ wþðee; dþÞ þ w�ðee; j; d�Þ ð38Þ
where
wþðee; dþÞ ¼ ð1� dþÞwþ
0 ðeeÞ ð39aÞ

w�ðee; j; d�Þ ¼ ð1� d�Þw�
0 ðee; jÞ ð39bÞ
Calling for Eqs. (10) and (36), the positive and negative component of the initial elastoplastic HFE wþ
0

and w�
0 can be expressed as
wþ
0 ¼ weþ

0 ¼ ð�rþ : K0 : �rÞ=2 ð40aÞ

w�
0 ¼ we�

0 þ wp�
0 ¼ b0ðaI1 þ

ffiffiffiffiffiffiffi
3J 2

p
Þ2 ð40bÞ
where the introduced approximations and the expression for parameters b0 are detailed in Appendix II.

3.3. Damage criteria and domain of linear behaviour

According to the definitions in Eq. (22), and taking Eqs. (39) into consideration, the tensile and shear
DERRs are expressed as
Y � ¼ � ow�

od� ¼ w�
0 ð41Þ
With these definitions for the DERRs, the state of damage in concrete can then be characterized by
means of damage criteria with the following two equivalent functional forms:
G�ðY �; r�Þ ¼ Y � � r� 6 0 () G
�ðY �; r�Þ ¼ g�ðY �Þ � g�ðr�Þ 6 0 ð42Þ
where r± are the current damage thresholds (energy barriers), which control the size of the expanding dam-
age surfaces. Denoting by r�0 the initial damage thresholds before any loading applied, Eq. (42) implies
r� P r�0 , which states that damages are initiated when the DERRs Y± exceed the corresponding initial
damage thresholds r�0 .

In Eq. (42) g±( Æ ) can be any monotonically increasing scalar functions, and in the proposed model func-

tions
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ð�Þ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffi
ð�Þ=b0

p
are postulated for convenience, therefore the tensile and shear DERRs given in

Eq. (41) can now be redefined as
Y þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0w

þ
0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0ð�rþ : K0 : �rÞ

p
ð43aÞ

Y � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w�

0 =b0
q

¼ aI1 þ
ffiffiffiffiffiffiffi
3J 2

p
ð43bÞ
Correspondingly, the initial tensile damage and shear damage thresholds are calculated as
rþ0 ¼ f þ
0 ; r�0 ¼ ð1� aÞf �

0 ð44Þ

where f þ

0 and f �
0 are the stresses (positive values) beyond which nonlinearity becomes visible under uniaxial

tension and compression, respectively.
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It should be noted that Eq. (43a) is unconditionally correct under all stress states, and Eq. (43b) holds
strictly under plane stress states. And it does exist stress states under which Y� is less than zero (e.g., under
hydrostatic compression), demonstrating that the compressive consolidation mechanism could play a sig-
nificant role.

Due to the above fact and the inherent shortcomings of the Drucker–Prager function, the predicted
results of the present model would be somewhat conservative in triaxial compression. Under a not too high
confinement compressive pressure, the shear DERR defined in Eq. (43b) can be modified to include the
influence of the third invariant of �r, namely through equation (Li and Wu, 2004)
Y � ¼ aI1 þ
ffiffiffiffiffiffiffi
3J 2

p
� ch��ri;maxi ð45Þ
with
c ¼ 3ð1� KcÞ=ð2Kc � 1Þ ð46Þ

where Kc, assumed as a constant (Lubliner et al., 1989), denotes the ratio of corresponding values of

ffiffiffiffiffi
J 2

p
under tensile meridian and compressive meridian stress states for any given value of hydrostatic pressure I1.
A value of Kc = 2/3 typical for concrete, gives c = 3.0, which is adopted here.

Note that in Eq. (45) the influence of coefficient c disappears in stress states other than triaxial compres-
sion, namely when �ri;max P 0. Therefore, Eq. (45) can be viewed as a minor modification of Eq. (43b) to
improve the predictive capability of the proposed model under stress state when the later does not hold.

Under biaxial stress states the damage criteria defined through Eqs. (42)–(45) lead to the domain of lin-
ear behaviour shown in Fig. 1, which agrees rather well with the experimental results from Kupfer et al.
(1969).
Fig. 1. Domain of linear behaviour of concrete under biaxial stresses.
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3.4. Characterization of damage

To describe the growth of microcracks and the evolution of the damage surfaces, it is necessary to specify
the evolution laws for the damage variables d± and the corresponding damage thresholds r±. Analogous to
the normality rule in classical plasticity, the evolution laws for the damage variables can be defined by
applying it to the damage criteria prescribed in Eq. (42)
_d
� ¼ _k

d� og�ðY �Þ
oY � ; _k

d� ¼ _r� ð47a; bÞ
where _k
d�

are damage consistency parameters.
In compacted form loading or unloading can be expressed through the Kuhn–Tucker relations
_k
d�

P 0; G
�ðY �; r�Þ 6 0; _k

d�
G

�ðY �; r�Þ ¼ 0 ð48a; b; cÞ
Calling for the damage consistency condition, one obtains
G
�ðY �; r�Þ ¼ _G

�
ðY �; r�Þ ¼ 0 ð49Þ
which yields
r� ¼ Y �; _k
d� ¼ _r� ¼ _Y

�
P 0 ð50Þ
So for a generic instant n thresholds r± are given by (Ju, 1989; Faria et al., 1998)
r� ¼ max r�0 ;max
s2½0;n�

Y �
s

� �
ð51Þ
Introducing Eq. (50) into Eq. (47a), the evolution laws for the damage variables during loading are ex-
pressed as
_d
� ¼ _r�

og�ðr�Þ
or�

¼ _g�ðr�Þ ð52Þ
Performing a trivial integration and accounting for the initial conditions d�ðr�0 Þ ¼ 0, one obtains
d� ¼ g�ðr�Þ ð53Þ
Usually concrete under one-dimensional tension is assumed to behave elastically until the stress reaches the
tensile strength ft ¼ f þ

0 , hardening is disregarded and the following function is adopted for damage variable
d+:
dþ ¼ gþ ¼ 1� rþ0
rþ

ð1� AþÞ þ Aþ exp Bþ 1� rþ

rþ0

� �
 �� �
ð54Þ
where parameters A+ and B+ are related to the percentage of steel qs in reinforced concrete, which in accor-
dance with experimental tests can be expressed as following (Stevens et al., 1991):
Aþ ¼ 1� csqs=db ð55aÞ
Bþ ¼ ð270=

ffiffiffiffiffiffi
Aþ

p
Þf þ

0 =E0 6 1000f þ
0 =E0 ð55bÞ
in which db is the rebar diameter (in mm); and cs has the dimension of length, and generally takes the value
of 75 mm.
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Eq. (54) actually describes the overall tension-stiffening effect due to the interaction between steel rebars
and concrete. In plain concrete A+ = 1.0 is obtained from Eq. (55a), thus Eq. (54) reduces to the function
first proposed by Oliver et al. (1990)
dþ ¼ gþ ¼ 1� rþ0
rþ

exp Bþ 1� rþ

rþ0

� �
 �
ð56Þ
To reduce sensitivity in the analysis of plain concrete as regards to the refinement of the finite element
meshes, parameter B+ involved in Eq. (56) should be computed so as to satisfy the requirement of mesh
objectivity (see Oliver et al., 1990)
Bþ ¼ GfE0

lchðf þ
0 Þ2

� 1

2

" #�1

P 0 ð57Þ
where lch is the ‘‘geometrical’’ characteristic length of finite element mesh.
To allow reproducing the hardening of concrete in compression, as well as the softening which charac-

terizes the post-peak behaviour, the following evolution for damage variable d� is adopted (Mazars, 1985;
Faria et al., 1998):
d� ¼ g� ¼ 1� r�0
r�

ð1� A�Þ þ A� exp B� 1� r�

r�0

� �
 �� �
ð58Þ
where parameters A� and B� may be determined by imposing the simulation curve to fit the one obtained
from a one-dimensional experimental test.

Correspondingly, from Eqs. (52), (54) and (58) the evolution laws for d± are expressed as
_d
� ¼ _r�h� P 0 ð59Þ
where h± are the following hardening/softening functions:
hþ ¼ ogþðrþÞ
orþ

¼ ð1� AþÞ rþ0
ðrþÞ2

þ Aþ Bþrþ þ rþ0
ðrþÞ2

exp Bþ 1� rþ

rþ0

� �
 �
ð60aÞ

h� ¼ og�ðr�Þ
or�

¼ ð1� A�Þ r�0
ðr�Þ2

þ A�B�

r�0
exp B� 1� r�

r�0

� �
 �
ð60bÞ
4. Computational aspects

4.1. Numerical algorithm

To explore the numerical implementation algorithm for the proposed plastic-damage model, the consti-
tutive law in Eq. (20) has to be differentiated with respect to time, leading to
_r ¼ ðI� xÞ : C0 : ð _e� _epÞ � ð�rþ _d
þ þ �r� _d

�Þ ð61Þ
with the symmetric fourth-order tensors x being
x ¼ dþQþ þ d�Q� ð62Þ
According to the concept of operator split (Ju, 1989; Simo and Hughes, 1998), Eq. (61) can be decom-
posed into elastic, plastic and damage parts, leading to the corresponding numerical algorithm including
elastic-predictor, plastic-corrector and damage-corrector steps, as established in Box 1 with Eqs. (63).
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Box 1. Numerical algorithm (operator split)
Elastic-predictor (63a)
 Plastic-corrector (63b)
 Damage-corrector (63c)
_e ¼ rs _uðtÞ
 _e ¼ 0 _ p p _
�
 _e ¼ 0
_ep ¼ 0
 _ep ¼ k o�rF if F ¼ F ¼ 0
0 otherwise
_ep ¼ 0
_j ¼ 0
 _j ¼ _k
p
H
 _j ¼ 0
_�r ¼ C0 : _e
 _�r ¼ �C0 : _e
p
 _�r ¼ 0
_d
� ¼ 0
 _d

� ¼ 0
 _d
� ¼ _r�h� if G

� ¼ _G
�
¼ 0

0 otherwise

(

_r� ¼ 0
 _r� ¼ 0
 _r� ¼ _Y
�

if G� ¼ _G
�
¼ 0

0 otherwise

(

_r ¼ ðI� xÞ : C0 : _e
 _r ¼ �ðI� xÞC0 : _e
p
 _r ¼ �ð�rþ _d

þ þ �r� _d
�Þ
It is noted that during the elastic-predictor and the plastic-corrector steps the damage variables are fixed,

so Eqs. (63a) and (63b) are decoupled with the damage part (63c), constituting a standard elastoplastic
problem in the effective stress space. Regarding to the plastic yield function Eq. (30) adopted, the spectral
decomposition form (Lee and Fenves, 2002) of return mapping algorithm (Simo and Hughes, 1998) is mod-
ified and improved to update the effective stress tensor �r.

Once �r is updated in the elastic-predictor and plastic-corrector steps, the damage variables d± and the
Cauchy stress r can thus be updated correspondingly in the damage-corrector step.

4.2. Algorithmic consistent tangent modulus

In the nonlinear finite element analysis, especially when post-peak behaviour is expected, the full New-
ton–Raphson method is usually adopted in the global iteration; hence, algorithmic consistent tangent mod-
ulus is required. According to Eq. (61), the total differential of Eq. (20) leads to
dr ¼ ðI� xÞ : d�r� ½�rþdðdþÞ þ �r�dðd�Þ� ð64Þ

Calling for Eqs. (43a), (45) and (59); and taking Eq. (50b) into consideration, the differentials of damage

variables in Eq. (64) are
dðdþÞ ¼ hþdðrþÞ ¼ hþ
E0

2Y þ ð�r : K0 : Q
þ þ �rþ : K0Þ : d�r ð65aÞ

dðd�Þ ¼ h�dðr�Þ ¼ h� a1þ 3

2
ffiffiffiffiffiffiffi
3J 2

p �sþ cHð��ri;maxÞpii;max

 !
: d�r ð65bÞ
with pii,max being the tensor pij associated to �ri;max. Then it can be easily concluded that
�rþdðdþÞ ¼ Rþ : d�r; �r�dðd�Þ ¼ R� : d�r ð66Þ

where
Rþ ¼ hþ
E0

2Y þ ½ �rþ � �rð Þ : K0 : Q
þ þ ð�rþ � �rþÞ : K0� ð67aÞ

R� ¼ h� �r� � a1þ 3

2
ffiffiffiffiffiffiffi
3J 2

p �sþ cHð��ri;maxÞpii;max

 !" #
ð67bÞ
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By introducing Eqs. (66) into Eq. (64), one gets
dr ¼ ðI� x� RÞ : d�r ¼ ðI� x� RÞ : C
alg

h i
: de ¼ Calg : de ð68Þ
with the algorithmic consistent tangent modulus Calg expressed as
Calg ¼ ðI� x� RÞ : C
alg ð69Þ
where R = R+ + R�; and C
alg

denotes the usual effective elastoplastic tangent modulus consistent with the
algorithm for updating the effective stress in the previous mentioned elastic-predictor and plastic-corrector
steps, satisfying
d�rnþ1 ¼ C
alg

: denþ1 ð70Þ
with the following expression (Wu, 2004):
C
alg ¼ K0 þ o�rF p � dDkp

d�rnþ1

þ Dkpo2�rF
p

� ��1

ð71Þ
where
dDkp

d�rnþ1

¼ � o�rF

ojF � Hþ Dkpo�̂rH � oDkp �̂r
� 
 ð72Þ
5. Applications

To illustrate the applicability and effectiveness of the proposed model, several numerical examples of
various loading conditions of concrete are presented in this section. The results obtained by the suggested
model are compared with corresponding experimental results to learn its performance. For all cases, unless
otherwise specified, Poisson�s ratio is 0.20; the equibiaxial to uniaxial compressive strength ratio # is 1.16,
and the dilatancy parameter ap is chosen as 0.20.

5.1. Monotonic uniaxial tensile tests

The experimental results from two typical monotonic uniaxial tensile tests (Geopalaeratnam and Shah,
1985; Zhang, 2001) are employed for the comparison purpose. The material properties used in the two test
were: (1) for Geopalaeratnam and Shah�s test, E0 = 3.1 · 104 MPa, f þ

0 ¼ 3.48 MPa, Gf = 100 N/m; (2) for
Zhang�s test, E0 = 3.8 · 104 MPa, f þ

0 ¼ 3.40 MPa, Gf = 70 N/m. Fig. 2 compares the predicted stress–strain
curves from the proposed model with those obtained from the experimental tests. For both tests, as it can
be observed from Fig. 2, predictions from the numerical model agree well with the experimental data, espe-
cially for the post-peak nonlinear softening branches.

5.2. Monotonic uniaxial compressive tests

The model ability to reproduce the concrete behaviour under monotonic uniaxial compression can be
checked in Fig. 3, where two types of experimental results taken from Karson and Jirsa (1969) and Zhang
(2001) are plotted against the numerical predictions. The material properties adopted in the simulations
were: for the former one, E0 = 3.17 · 104 MPa, f þ

0 ¼ 3.0 MPa and f �
0 ¼ 10.2 MPa; and for the latter

one, E0 = 3.8 · 104 MPa, f þ
0 ¼ 3.40 MPa and f �

0 ¼ 43.0 MPa. As shown in Fig. 3, either in the hardening
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Fig. 2. Monotonic uniaxial tensile tests: (a) Geopalaeratnam and Shah (1985); (b) Zhang (2001).
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or in the softening regimes, the overall nonlinear performances numerically predicted and the experimental
obtained stress–strain curves are rather close.

5.3. Monotonic biaxial stress test

The proposed model is also validated with the results under biaxial compression (r3 = 0) reported in
Kupfer et al. (1969). The material properties adopted in the simulation were: E0 = 3.1 · 104 MPa,
f þ
0 ¼ 3.0 MPa, f �

0 ¼ 15.0 MPa, Gf = 75 N/m. For specimens under load conditions r2/r1 = �1/0,
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Fig. 3. Monotonic uniaxial compressive tests: (a) Karson and Jirsa (1969); (b) Zhang (2001).
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r2/r1 = �1/�1 and r2/r1 = �1/�0.52, the predicted stress–strain curves illustrated in Fig. 4a–c agree well
with the experimental ones, capturing the overall experimental behaviour.

To illustrate the capability of the proposed model for predicting the nonlinear behaviour of concrete un-
der other biaxial stress states, using the same material properties as above, the numerical biaxial strength
envelope is reproduced in Fig. 4d as well, which is found to be almost coincident with the experimental one
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Fig. 4. Monotonic biaxial compressive tests (Kupfer et al., 1969): (a) r2/r1 = �1/0; (b) r2/r1 = �1/�1; (c) r2/r1 = �1/�0.52; (d)
strength envelope under biaxial stresses.
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from Kupfer et al. (1969). The predicted envelope without considering the contribution of the plastic HFE
potential is also provided in Fig. 4d, which reproduces the same conservative results as those of Mazars
(1985). As clearly perceptible in Fig. 4d, another important attribute of the present model is its ability to
predict not only the enhancement of concrete strength under biaxial compression, but also the reduction
on the compressive strength induced by orthogonal tensile cracking under tension–compression stress states.

5.4. Concrete under 3D compression

To check the application of the proposed model to concrete in compression under confinement, Fig. 5
compares the numerical predictions with the experimental results obtained by Green and Swanson (1973).



Fig. 5. 3D compression test (Green and Swanson, 1973).
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To fit the uniaxial compressive stress–strain curve also reported in Fig. 5, the material properties adopted in
the simulation were: E0 = 3.7 · 104 MPa, f þ

0 ¼ 4.0 MPa, f �
0 ¼ 15.0 MPa. The numerical predictions of

specimens under three sets of confining stresses, namely, r1 = r2 = 0.0 MPa, r1 = r2 = �6.895 MPa and
r1 = r2 = �13.79 MPa, are reproduced in Fig. 5. It can be clearly seen that the enhancement of strength
and ductility due to the compressive confinement, as well as the overall stress–strain experimental curves,
are satisfactorily predicted by the proposed model.

5.5. Cyclic uniaxial tests

In Fig. 6 the cyclic uniaxial tensile test of Taylor (1992) and the cyclic compressive test of Karson and
Jirsa (1969) are reproduced numerically to demonstrate the capability of the proposed model under cyclic
load conditions. The following properties were adopted: for Taylor�s simulation, E0 = 3.17 · 104 MPa,
f þ
0 ¼ 3.50 MPa, Gf = 24 N/m; and for Karsan and Jirsa�s one, E0 = 3.0 · 104 MPa, f �

0 ¼ 15.0 MPa. As
shown in Fig. 6, under both tension and compression, the experimentally observed strength softening
and stiffness degrading, as well as the irreversible strains upon unloading, are well reproduced by the pro-
posed model.

5.6. Concrete dam under earthquake motions

To further illustrate the capability of the proposed model, the Koyna dam subjected to the recorded
transverse and vertical components of the ground accelerations during the earthquake motions in 1967,
extensively studied by other investigators (Chopra and Chakrabarti, 1973; Bhattacharjee and Leeger,
1993; Ghrib and Tinawi, 1995; Cervera et al., 1996; and Lee and Fenves, 1998; etc.), is analyzed here.

Following the work of above investigators, the dam-foundation interactions was ignored assuming a
rigid foundation, and a finite element mesh consisting of 760 4-node plane stress elements with 2 · 2 Gauss
integration was adopted to model the dam. The dam-reservoir dynamic interactions were modeled using a
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Fig. 6. Cyclic uniaxial tests: (a) cyclic uniaxial tension test (Taylor, 1992); (b) cyclic uniaxial compressive test (Karson and Jirsa, 1969).
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2-node element by the added mass technique of Westergaard (1933). A Rayleigh stiffness-proportional
damping factor was assumed to provide a 3% fraction of the critical damping for the first mode of vibration
of the dam. The generally used Hilber–Hughes–Taylor HHT-a method was adopted to integrate the dy-
namic equation of motion. The material properties adopted in the simulation were: density
q0 = 2643 kg/m3, E0 = 31027 MPa, ft ¼ f þ

0 ¼ 2.9 MPa, fc = 24.1 MPa, Gf = 200 N/m.
The predicted results of the horizontal displacements at the left corner of the dam crest are shown in

Fig. 7a and b (the positive values represent the displacement towards downstream), which agree well with
those by Lee and Fenves (1998). The evolution of tensile damage and the damage patterns predicted by the
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Fig. 7. Koyna dam under earthquake motions: (a) horizontal crest displacement relative to ground; (b) spatial horizontal crest
displacement.
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proposed model (Wu, 2004) are also in fair agreement with the observed damages reported by other inves-
tigators (Bhattacharjee and Leeger, 1993; Lee and Fenves, 1998).

5.7. Reinforced concrete slab

A square slab experimentally tested by McNeice (1967), supported at the four corners and loaded by a
point load at its center, is to be simulated herein. The slab was reinforced in the two directions at 75% of its
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depth, and the reinforcement ratio was 0.85% in each direction. The material properties for the concrete
were: E0 = 28.6 GPa; m0 = 0.15; f þ

0 ¼ 3.17 MPa, f �
0 ¼ 10.68 MPa. For steel rebars, the material properties

were: Young�s modulus equal to 200 GPa and yield strength equal to 345 MPa (an elastic-perfectly plastic
behaviour was assumed). One quarter of the slab is modeled regarding to the geometry symmetries. A 3 · 3
mesh of 8-node shell elements is used for modeling the concrete where the proposed model was enforced,
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and the two-way reinforcement was modeled using smeared rebar layers, each one with an appropriate
thickness of the exact cross-sectional area of reinforcement.

The comparison between the experimental result and the numerical simulation is presented in Fig. 8 in
terms of a curve representing the central load versus the central deflection of the slab. It can be clearly seen
that the predicted results of the proposed model, namely the cracking and the ultimate loads, as well as the
entire load–deflection curve, fit rather well the experimental ones.

5.8. Reinforced concrete shearwalls

The proposed model was also used to simulate the nonlinear performances of 13 large-scale reinforced
concrete shearwalls, tested by Lefas et al. (1990) under various axial and monotonically increasing horizon-
tal forces. The experiment consisted of two types of geometries: type 1 with a height/width ratio equal to
Fig. 10. Distribution of tensile damage in shearwall SW11—(a) horizontal force: 122.0 kN; (b) horizontal force: 153.1 kN.



Table 1
Peak horizontal forces and corresponding displacements for the shearwalls

Wall Fu,test (kN) Fu,model (kN) Fu,model/Fu,test Uu,test (mm) Uu,model (mm) Uu,model/Uu,test

SW11 260 259.6 0.998 9.8 10.9 1.107
SW12 340 328.4 0.966 9.8 10.0 1.019
SW13 330 352.0 1.067 8.9 11.4 1.284
SW14 265 259.6 0.980 11.2 10.9 0.969
SW15 320 321.5 1.005 8.8 10.0 1.129
SW16 355 354.9 1.000 5.8 6.9 1.197
SW17 247 241.8 0.979 10.8 10.5 0.972
SW21 127 121.7 0.958 20.6 20.0 0.970
SW22 150 148.9 0.993 15.3 14.6 0.954
SW23 180 170.2 0.946 13.2 14.6 1.107
SW24 120 121.7 1.014 18.1 20.0 1.103
SW25 150 164.3 1.095 9.5 13.1 1.383
SW26 123 120.1 0.976 20.9 21.7 1.036
Mean / / 0.998 / / 1.095
C.O.V. / / 0.042 / / 0.131
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1.0, and type 2, where such ratio is 2.0. The steel configurations, the vertical loadings and other details of
the experimental tests are referred in Lefas et al. (1990) and Vecchio (1992). The material properties of con-
crete adopted in the simulation were: E0 = 30.7 GPa, f þ

0 ¼ 3.0 MPa, f �
0 ¼ 10.0 MPa. For both types of

shearwalls, 8-node plane stress elements and 2-node truss element are used for modeling the concrete
and the steel reinforcement, respectively.

The numerically predicted load–displacement responses agree well with the experimental results, one of
which is shown in Fig. 9, reproducing the horizontal force and displacement at the top of the shearwalls
SW11 and SW14. The distributions of the tensile damage of SW11 under the horizontal loadings of
122.0 kN and 153.1 kN are shown in Fig. 10, providing useful information about the flexural-shear induced
cracking.

For the 13 shearwalls the peak loads and the corresponding displacements computed with the proposed
model are compared with the experimental ones in Table 1. It can be clearly seen that the peak forces F and
the corresponding displacements U of all the shearwalls are reproduced rather well by the proposed model:
(i) the ratio of the numerically predicted peak loads to the experimental ones has a mean value of 0.998 and
a coefficient of variation of 0.042, and (ii) the corresponding values for the displacement ratios are 1.095
and 0.131, respectively.
6. Conclusions

This paper presents a damage energy release rate-based plastic-damage constitutive model, mainly in-
tended for the nonlinear analysis of plain and reinforced concrete structures. Within the framework of con-
tinuum damage mechanics, two damage scalars that lead to a fourth-order damage tensor are adopted to
describe the degradation of the macromechanical properties of concrete. An elegant constitutive law is for-
mulated on the basis of a decomposition of effective stress tensor. The plastic Helmholtz free energy is taken
into accounted for the damage growth, and the damage criteria are based on the elastoplastic damage en-
ergy release rates.

The numerical predictions from the proposed model when applied to plain concrete and reinforced con-
crete specimens and structures were checked in several experimental examples, demonstrating the following
capabilities:
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(1) It is able to reproduce most of the typical nonlinear performances of concrete under monotonic and
cyclic load conditions, as well as under 2D or 3D stress states;

(2) It is capable of providing not only the experimentally observed load–deflection response curves, but
also the real distributions of structural damages.
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Appendix I. Derivation of the projection tensors of �r and _�r

The spectral decomposition of the effective stress tensor proposed in Ortiz (1985) is considered here
�r ¼
X
i

�rini � ni ðA-I:1Þ
where �ri and ni (i = 1, 2, 3) are the extracted effective eigenstresses and the corresponding normalized eigen-
vectors, which the following properties hold:
ni � �r � ni ¼ �ri; ni � nj ¼ dij ðA-I:2a; bÞ
The positive component of the effective stress tensor �rþ can be expressed as
�rþ ¼
X
i

h�riini � ni ¼
X
i

Hð�riÞni � ni�ri ðA-I:3Þ
Substituting Eq. (A-I.2a) into Eq. (A-I.3), one obtains
�rþ ¼
X
i

Hð�riÞni � ni½ðni � niÞ : �r� ¼ Pþ : �r ðA-I:4Þ
with the positive projection tensor P+ being (Faria et al., 2000)
Pþ ¼
X
i

Hð�riÞðni � niÞ � ðni � niÞ ðA-I:5Þ
which were already defined in Eqs. (3a) and (4a), accordingly, �r� and P� defined in Eqs. (3b) and (4b) can
thus be easily obtained.

The total differential of Eq. (A-I.3) gives
d�rþ ¼
X
i

Hð�riÞðni � niÞd�ri þ
X
i

h�riidðni � niÞ ðA-I:6Þ
Differentiating of Eq. (A-I.2a), one obtains
d�ri ¼ ni � d�r � ni þ 2dni � �r � ni ¼ ðni � niÞ : d�r ðA-I:7Þ
where Eq. (A-I.2b) is taken into consideration to conclude that the above second right term is equal to zero.
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In Faria et al. (2000) the expression for d(ni � ni) was derived as
dðni � niÞ ¼ dni � ni þ ni � dni ¼ 2
X
j 6¼i

1

�ri � �rj
ðpij � pijÞ

" #
: d�r ðA-I:8Þ
where pij is the second-order symmetry tensor defined in Eq. (7).
Substituting Eqs. (A-I.7) and (A-I.8) into Eq. (A-I.6), and after some simple simplifications, Q+ and Q�

which are the fourth-order symmetry projection tensor of _�r, can thus be derived as those expressions de-
fined in Eqs. (6a) and (6b).
Appendix II. Derivation of the plastic and elastoplastic HFE potential

Since the contribution to the HFE potential of plastic strains in tension is neglected in the proposed
mode, i.e, wpþ

0 ¼ 0 is assumed, the plastic HFE potential is defined
wp
0ðjÞ ¼ wp�

0 ðjÞ ¼
Z ep

0

�r� : dep ðA-II:1Þ
Substituting Eq. (25) into (A-II.1), and after some simplifications (Wu, 2004), the above initial plastic HFE
potential becomes Eq. (36) as
wp
0 ¼

b
2E0

3J
�
2 þ gpI

�
1

ffiffiffiffiffiffiffi
3J 2

p
� 1

2
I
þ
1 I

�
1

� �
ðA-II:2Þ
where parameter b P 0 will be determined in the following procedure. If b = 0 is assumed, the contribution
of plastic HFE would not be taken into consideration.

Calling for Eq. (2) and with m0 denoting the initial Poisson�s ratio, the negative component of the elastic
HFE potential defined in Eq. (10b) is rewritten as
we�
0 ¼ 1

2E0

2ð1þ m0Þ
3

3J
�
2 þ 1� 2m0

3
ðI�1 Þ

2 � m0I
þ
1 I

�
1


 �
ðA-II:3Þ
Then w�
0 defined in Eq. (39b) becomes
w�
0 ¼ we�

0 þ wp�
0 ¼ b0 3J

�
2 þ b1I

�
1

ffiffiffiffiffiffiffi
3J 2

p
þ b2ðI

�
1 Þ

2 þ b3I
þ
1 I

�
1

h i
ðA-II:4Þ
with parameters b0, b1, b2 and b3 being
b0 ¼ a=ð6E0Þ; b1 ¼ 3bgp=a; b2 ¼ ð1� 2m0Þ=a; b3 ¼ �1.5ðb� 2m0Þ=a ðA-II:5Þ

and a = 3b + 2(1 + m0).

Calling for Eqs. (41) and (A-II.4), under pure compression Y� can then be reduced to the following
expression:
Y � ¼ w�
0 ¼ b0 3J

�
2 þ b1I

�
1

ffiffiffiffiffiffiffiffi
3J

�
2

q
þ b2ðI

�
1 Þ

2


 �
ðA-II:6Þ
Denoting by f �
b0 the stresses (positive values) beyond which nonlinearity becomes visible under equibiaxial

compression, the initial shear damage threshold r�0 is thus established as (Wu, 2004)
r�0 ¼ 1

2E0

½1þ bð1� gpÞ�ðf �
0 Þ

2 ¼ 1

2E0

½2ð1� m0Þ þ bð1� 2gpÞ�ðf �
b0Þ

2 ðA-II:7Þ
leading to the following expression for parameter b introduced in Eq. (A-II.2) as
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b ¼ 1� 2ð1� m0Þ#2
0

ð1� 2gpÞ#2
0 � ð1� gpÞ

ðA-II:8Þ
with #0 ¼ f �
b0=f

�
0 , assumed to take the same value as # defined in Eq. (31a), i.e, #0 = # (Lubliner et al.,

1989). For concrete, the following inequality is inherently satisfied:
1� 2ð1� m0Þ#2 < 0 ðA-II:9Þ

Owing to the non-negative nature of parameter b, Eqs. (A-II.8) and (A-II.9) lead to the condition that

dilatancy parameter ap should fulfill
ap ¼
ffiffiffiffiffiffiffiffi
2=3

p
gp P

ffiffiffiffiffiffiffiffi
2=3

p
ð#2 � 1Þ=ð2#2 � 1Þ ðA-II:10Þ
(b)

(a)

Fig. 11. Influence of parameter gp: (a) domain of linear behaviour under biaxial compression; (b) plastic potential.
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Since ratio # usually lies in the interval 1.10–1.20, from Eq. (A-II.10) one gets ap P 0.12–0.19, which can be
strictly satisfied since the value of 0.20–0.30 is usually adopted for concrete (Lee and Fenves, 1998).

Taking into consideration Eqs. (A-II.6) and (A-II.7), for different dilatancy parameters gp, the corre-
sponding domains of linear behaviour of concrete under biaxial compression, using the typical parameters
m0 = 0.2 and # = 1.16, are shown in Fig. 11; the plastic potential function introduced in Eq. (24), corre-
sponding to different values of gp are also reproduced.

As the dilatancy parameter gp (or ap) has substantial influence on the plastic potential, but almost no
effect on the domains of linear behaviour under biaxial compression, it allows great simplifications to be
introduced on the shear DERR expressed in Eq. (A-II.6). Let gp take the value of 0.25756, i.e.,
ap = 0.21, then b2 = (b1/2)

2 is obtained, and consequently Eq. (A-II.6) can be approximated by the follow-
ing form of a perfect square polynomial:
Y � ¼ w�
0 ¼ b0 aI

�
1 þ

ffiffiffiffiffiffiffiffi
3J

�
2

q� �2

ðA-II:11Þ
In a tension-included stress states (e.g. tensile-compressive quadrants), according to Eq. (A-II.4) the ten-
sile stresses do have some influence on the domain of linear behaviour, localized in the circle areas close to
the tension–compression corners depicted in Fig. 1, whose effect is so subtle that can be ignored. Conse-
quently, the negative component of initial elastoplastic HFE potential w�

0 and the corresponding shear
DERR Y� defined in Eq. (A-II.11), can be further approximated as the expression defined in (40b).

It should be noted that the above approximations lead to great simplicity without significant loss of
accuracy, and at the same time they ensure the convexity of the damage surfaces, which not only can greatly
facilitate its numerical implementation, but also may enhance the numerical stability of the proposed
model.
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